SSDS: Secure Session-Data Storage

Protecting HTTP session-data
on web application servers from

prying eyes

Introduction

= Professional life

= Information Security Officer at Deutsche Post
= http://blog.deutschepost.de/security/ (soon)

= Personal life

= http://juergen.pabel.net/blog/
= http://www.rugby-koeln.de/

http://blog.deutschepost.de/security/
http://juergen.pabel.net/blog/
http://www.rugby-koeln.de/

= Standard web application architecture

= HTTP session-data basics
= Associated risks

= Secure Session-Data Storage (SSDS)

= Concept
= Cryptographic details

= Demo (php-ssds)

= The web application has been audited for
vulnerabillities (Cross-Site-Scripting, SQL
Injections, ...)

= The servers and %

networks have
been hardened

Standard web application architecture

= Cookie based state & session-management

= Random ID assigned to each client as cookie value

HTTP/1.1 200 OK
Server: example.com
Set-Cookie: PHPSESSID=A1B2C3D4ES5F6G7HS

[...]

= Server maintains "database” of all IDs and their
assoclated data values

= Client sends cookie value with each HTTP request

GET / HTTP/1.1
Host: example.com
Cookie: PHPSESSID=A1B2C3D4ES5F6G7HS8

[...]
= Permanent vs. Session cookies

Cookies in web applications

Web client

Web server

Web client

Web client

Storage Backend

user=juergen
user=roland

A:
B:
C: user=ralf

w

Associated risks (1/2)

= Session-ID hijacking

= The Session-ID is used as the primary key In the
session-data storage backend (filesystem,
memcache,...)

= Access to the session-data storage backend yields
access to any currently logged-in user session

= Copy any Session-ID from the storage backend and
put it in the cookie in a browser

Associated risks (2/2)

= Name five things that....are usually/sometimes
"stored” on the server with a cookie

= HTTP state data (login status, multi-page status, ...)
Account data (username, privileges, ...)

Application data (shopping cart, todo list, ...)
Passwords (user login, backend/partner system, ...)
Credit cards

The concept of SSDS

= Hash the Session-ID before passing it to the
storage backend as the primary key ("Storage-1D")

= (Optionally) Encrypt the session-data using the
Session-ID...

= ...however, Session-IDs might be of variable length...

= ...S0 the (fixed length) hash-value of a Session-ID is
used as the encryption key...

= ...but that would be the Storage-ID; thus with session-
data encryption enabled, the Storage-ID is actually a
hash-value of the encryption key.

SSDS concept visualized: Session-ID

Web client

Web server

Web client

Web client

7 e Banband S
Storage Backend

Hash(A): user=juergen
Hash(B): user=roland
Hash(C): user=ralf

w

SSDS concept visualized: Encryption

Web client

Session-ID A

Web server

Web client

Session-IDB

Web client

Session-IDC

<
Storage Backend

Storage-ID A: <ciphertext>
Storage-ID B: <ciphertext>
Sotrage-ID C: <ciphertext>

Storage-ID N

SSDS cryptographic details

= Encryption key remains constant (for any given
Session-ID) but multiple encryptions occur

= A unigue initialization-vector (IV) needs to be
provided for each encryption operation...

= ...and for the most common block mode cipher
(CBC), the IV also needs to be unpredictable...

= ...and the first idea was to use the server's PRNG
but that might drain the entropy pool very quickly

= ...thus, in SSDS the IV is computed as
hashiv (concat (NOW, SESSION-ID))

__hash

= Implemented as a PHP extension in C

= Registers a PHP "save handler”
= Uses a backend/pass-through "save handler” for

actually persisting all data (like "files”, "mysql”, etc)
= Configuration per PHP settings

= ssds.
= ssds.
= ssds.
= ssds.
= ssds.

= ssds.

save_handler = <backend for data storage>
save_path = <configuration for storage backend>
sid_hash = <digest for Storage-ID derivation>
data_cipher = <cipher for data encryption>
key_hash = <digest for key derivation>

1iv_hash = <digest for IV derivation>

php-ssds Configuration

= php.ini
session.save_ handler = ssds

session.save_path =

= ssds.ini
extension = ssds.so
ssds.save handler = files

ssds.save_path = /var/lib/phpb5
ssds.s1d_hash = ripemdl60
ssds.data_cipher = aes-256-cbc
ssds.key_hash = sha256

ssds.i1v_hash = mdb

php-ssds Demo?

= Nothing to see here, move along!

= Really; it runs entirely transparently for all web
applications

= Example for Session-ID vigéehuba8lb9gpg6g1hi7g3n7

= php (/var/lib/php5/sess_viqg6ehuba8lb9gpg6glhi7g3n7)
time|1:1337337184;datals:1:"x";

= php-ssds (/var/lib/php5/sess e73407a8dlac72ca03c599b660ae9ae?)
9Ar59gGImihQ7B+/g7m61+4it9vVdU8/Y/b2c5LFk2IPY=#9281b50004
c880e0e317615c9d7fd2fa

= php-ssds
= Version 1.1
= Stable, tested and security audited

= Java-ssds
= Work in progress

= {python|ruby|.NET|*}-ssds
= Please contact me if you want to work on this

= Sources: http://php-ssds.sourceforge.net/
http://java-ssds.sourceforge.net/ (~Nov)

= Blogs: http://juergen.pabel.net/blog/
http://blog.deutschepost.de/security/

= Contact: juergen@pabel.net
juergen.pabel@deutschepost.de

http://php-ssds.sourceforge.net/
http://java-ssds.sourceforge.net/
http://juergen.pabel.net/blog/
http://blog.deutschepost.de/security/
mailto:juergen@pabel.net
mailto:juergen.pabel@deutschepost.de

Please ask guestions!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

