
Building the slowest MySQL
application

Stéphane Combaudon
Froscon

August 2012

www.percona.com

Agenda

● Architecture
● Configuration
● Schema/Indexes
● Queries
● Hardware
● Backup/Recovery
● Instrumentation

www.percona.com

Architecture

● Does everybody need sharding?
● Definitely no!
● Only if a single server can't handle the write load
● Functional partitioning is safer and easier to

implement

● Keep it simple
● Not every application is Facebook size!
● Operations are cheaper if the architecture is simple

www.percona.com

Typical replication topologies

● Master-master
● Great to improve HA, not to improve write capacity
● Never write on both masters!

● Master-slaves
● The “standard” setup, very good to scale a read-

mostly application
● Promoting a slave if the master crashes is not as

easy as it seems

www.percona.com

Master-slave: master crash

● If master crashes
● No writes available
● You have to promote one of the slaves

www.percona.com

Promoting a slave

● Promoting S1 is not enough

● Need to set up replication between S1 and S2

www.percona.com

Configuration

● Most common traps
● Keep the default my.cnf
● Spend weeks to fine-tune every setting
● New HW 2x powerful does not mean you can

simply set settings 2x bigger
● Anyway bigger is not always better

● These can lead to performance problems,
instability and frustration

www.percona.com

Essential settings

● InnoDB
● Buffer pool: innodb_buffer_pool_size
● Redo logs: innodb_log_file_size

● No query cache (almost always correct)
● query_cache_type = 0

● query_cache_size = 0

● You're done!

● Was it easier than you thought?

www.percona.com

Easy to configure and helpful

● InnoDB durability: innodb_flush_log_at_trx_commit
● Sync binlog contents to disk at each commit:

sync_binlog = 1

● Easy to configure by reading the doc
● Size of the table_cache: table_definition_cache,

table_open_cache

● Size of thread cache: thread_cache
● Upper limit of concurrent cnx: max_connections
● Disabling DNS lookups: skip_name_resolve

www.percona.com

What you should not configure

● Specialized buffers
● sort_buffer_size, join_buffer_size, ...

● Esoteric settings
● innodb_concurrency_tickets, back_log, ...

● Look at these settings only if you do know what you're
doing

www.percona.com

Conf for master and slaves

● If same HW, conf should be approx. the same

● You can take shortcuts on slaves for perf.
● No binary logging
● Relaxed InnoDB durability
● read_only parameter to avoid most accidental writes

● If you promote a slave, don't forget to change
its configuration!

www.percona.com

Schema

● For many: “normalization kills performance”
● Because it increases the number of joins
● And joins increase the number of random ops

● But
● Only true for specific hot spots in high load apps

● Other performance killer designs
● Having everything in a BLOB column
● Entity-Attribute-Value

www.percona.com

(De)Normalization

● Normalize and index correctly first
● Be sure to understand all the benefits of indexing:

filtering, sorting, covering
● SSDs mitigates cost of random ops for normalized

schemas

● Denormalize if some queries become slow
● Some combinations of filtering/sorting can't be

solved with indexes
● Some queries will have to read lots of data

– Often the case with COUNT(*) or GROUP BY queries

www.percona.com

Other useful tips

● Don't be too generous when sizing
● The whole size is used for implicit temp tables
● Use tinyint instead of int if possible
● Use varchar(30) instead of varchar(255) if possible

● InnoDB tables and primary keys
● The PK holds the data (clustering index)
● It is implicitly included in all secondary keys
● So set a PK explicitly, as short as possible

www.percona.com

A common problem

● Let's design the user table of a social network
 CREATE TABLE user(
 user_id INT AUTO_INCREMENT,
 login VARCHAR(30),
 password VARCHAR(30),
 PRIMARY KEY(user_id)
)ENGINE = InnoDB

● Over time, you will add contact information(phone,
address, …), preferences, etc
– The table will quickly grow very big, queries will be slow
– Fragmentation and slow ALTER TABLEs will be the norm

● What can you do?

www.percona.com

A solution

● Let's create 2 new tables:
 CREATE TABLE user_info(CREATE TABLE user_has_info(
 user_info_id INT AUTO_INC., user_id INT,
 value VARCHAR(30), user_info_id INT,
 PRIMARY KEY(user_info_id) PRIMARY KEY(user_id,user_info_id)
)ENGINE = InnoDB;)ENGINE = InnoDB;

● Now adding a property is easy and generic:
● Insert a line in user_info to register the property
● Insert a line in user_has_info for each user_id

having the property

www.percona.com

Pros and cons

● Benefits
● No need to alter the user table anymore
● Development is easier

● Drawbacks
● The user_has_info table will not scale well

– Every user will have 10s of rows in the table
● Some queries are difficult to write efficiently

– List of the users not having property xxx

www.percona.com

Final thoughts

● In this particular situation:
● Some properties can go to the user table
● Some properties can go to the user_info table
● Some properties will need dedicated tables

● As your application grows, you will have to deal
with this kind of problem
● Be creative!
● But try not to over-engineer

www.percona.com

Queries

● If my queries are slow, what can I do?
● “No pb, just upgrade your HW”

● Not always the solution
● Cost
● Physical limit of your HW
● Contentions in MySQL
● What if your queries are just waiting to sth external

to the database?

www.percona.com

Improving queries

● Means improving response time
● Low and stable response time is your goal
● Stability is often overlooked

● How to make a query run quicker?
● Remove unnecessary work
● Run necessary work as efficiently as possible

www.percona.com

Remove unnecessary work

● Select only columns you really need
● Exception: SELECT * can be useful for caching

purposes

● Select only rows you really need
● Use a LIMIT N clause if you want the top N results

● Use caching to offload the DB
● The fastest query is the query you don't run

www.percona.com

Optimize necessary work

● All access types are not equal
● type column in EXPLAIN output: index (index scan)

and ALL (full scan) are the worst ones
● An index scan can be order of magnitudes slower

than a full scan

● Rewriting queries
● Subqueries may perform very badly (much better in

5.6 and in new versions of MariaDB)
● Use INNER JOIN instead of LEFT JOIN when

possible

www.percona.com

Indexing

● Correct indexing is key to good performance
● Not as easy as it seems
● Too few idx kill perf, too many idx kill perf too...
● Tools can help you find improvements

– pt-duplicate-key-checker will find duplicate idx
– pt-query-digest and pt-index-usage will help you find slow

queries
– user_statistics feature in MariaDB and Percona Server is

useful to identify useless indexes

www.percona.com

Hardware

● In short
● Use commodity: it doesn't mean junk!
● 24 cores, 128GB RAM, 640 GB SSD is still

commodity

● CPU
● No parallelization of query execution, so fast CPUs

are needed for good response times
● MySQL scalability has greatly improved

www.percona.com

RAM

● Memory
● MySQL uses memory to cache index/data and for

buffers
● If possible you want your working set to be cached

in memory

● Your working set is the fraction of your data that
is accessed frequently
● Not easy to assess it (1% to 100% of your data)

www.percona.com

Disks

● The world is moving to flash storage
● Much more IOPS and lower latency than HDDs
● Especially good at random IOPS
● SLC (performance) vs MLC (cost, capacity)

● You may need to update your my.cnf to take
advantage of Flash
● Percona Server and MariaDB offer the most

flexibility
● MySQL 5.6 is catching up

www.percona.com

Flash technologies

● SSD
● SATA interface: drop-in replacement for HDDs
● You need RAID like for HDDs

● PCIe devices
● Needs special drivers
● Better performance than SSD
● No need for RAID

www.percona.com

SSD/HDD usage patterns

● Mixing HDDs and Flash
● Flash for hot data / HDDs for archives
● Flash for data files / HDDs for InnoDB redo logs

● More RAM is often the best, but not if
● The amount of RAM is limited
● You have a high-throughput write workload

www.percona.com

HW for master and slaves

● Things to keep in mind
● Slaves must be able to keep up with the master's

write load
● If you promote a slave, it should be as powerful as

the master

● Common choices
● Same HW for master and slaves
● New HW for master, master's old HW for slave
● Flash for slaves, HDDs for master

www.percona.com

Backup/Recovery

● Typical mistake: focus on backup
● A backup you can't restore is useless
● So focus on restoring instead of backing up!

● Different needs
● For backups: low-impact required, quick if possible
● For restores: quick required, low-impact if possible

www.percona.com

Defining the right strategy

● First you should know your RPO and RTO
● RPO: Recovery Point Objective, ie how much data

can you lose?
● RTO: Recovery Time Objective, ie how much

downtime can you afford?

● Relaxed RPO and RTO means you will have
more options to choose a tool

www.percona.com

Different kinds of backup

● Logical backups
● Text files, easily readable, editable (grep, sed, awk)
● Flexible – see list of options for mysqldump
● Restoring is VERY slow

● Raw backups
● Binary files
● Restoring the whole backup is fast
● Often not obvious to restore a single table/db

www.percona.com

mysqldump

● A must for small databases (max ~ 10GB)
● Very flexible
● Backups are fast
● Restores are not too slow

● But totally unusable for larger databases
● Restore time is a showstopper

www.percona.com

XtraBackup

● Online raw backups with low-impact
● Full / incremental backup
● Moving single tables from server to server
● Parallel backups
● Streaming backups
● In active development
● And more...

www.percona.com

Instrumentation/monitoring

● Monitoring/alerting will warn you when sth is
wrong
● Nagios, Zabbix...
● Spend some time designing meaningful checks

● Graphing/trending
● Cacti, Munin...
● Will help you identify why things have broken
● Graph everything you can from CPU usage to size

of the InnoDB buffer pool

www.percona.com

Instrumentation inside MySQL

● EXPLAIN
● SHOW PROFILE
● SHOW GLOBAL STATUS
● SHOW ENGINE INNODB STATUS
● SHOW MUTEX STATUS
● INFORMATION_SCHEMA
● PERFORMANCE_SCHEMA

www.percona.com

Instrumentation outside MySQL

● vmstat, iostat, mpstat...
● top, free...
● innotop
● Percona Toolkit
● Learn at least how to use some of the tools

● Sometimes you need realtime diagnostics
● Monitoring tools always have a lag

www.percona.com

● Thanks for attending!

● Q & A

stephane.combaudon@percona.com

We're Hiring! www.percona.com/about-us/careers/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39

