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Architecture

● Does everybody need sharding?
● Definitely no!
● Only if a single server can't handle the write load
● Functional partitioning is safer and easier to 

implement

● Keep it simple
● Not every application is Facebook size!
● Operations are cheaper if the architecture is simple
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Typical replication topologies

● Master-master
● Great to improve HA, not to improve write capacity
● Never write on both masters!

● Master-slaves
● The “standard” setup, very good to scale a read-

mostly application
● Promoting a slave if the master crashes is not as 

easy as it seems
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Master-slave: master crash

● If master crashes
● No writes available
● You have to promote one of the slaves
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Promoting a slave

● Promoting S1 is not enough

● Need to set up replication between S1 and S2
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Configuration

● Most common traps
● Keep the default my.cnf
● Spend weeks to fine-tune every setting
● New HW 2x powerful does not mean you can 

simply set settings 2x bigger
● Anyway bigger is not always better

● These can lead to performance problems, 
instability and frustration
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Essential settings

● InnoDB
● Buffer pool: innodb_buffer_pool_size
● Redo logs: innodb_log_file_size

● No query cache (almost always correct)
● query_cache_type = 0

● query_cache_size = 0

● You're done!

● Was it easier than you thought?
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Easy to configure and helpful

● InnoDB durability: innodb_flush_log_at_trx_commit
● Sync binlog contents to disk at each commit: 

sync_binlog = 1

● Easy to configure by reading the doc
● Size of the table_cache: table_definition_cache, 

table_open_cache

● Size of thread cache: thread_cache
● Upper limit of concurrent cnx: max_connections
● Disabling DNS lookups: skip_name_resolve
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What you should not configure

● Specialized buffers
● sort_buffer_size, join_buffer_size, ...

● Esoteric settings
● innodb_concurrency_tickets, back_log, ...

● Look at these settings only if you do know what you're 
doing
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Conf for master and slaves

● If same HW, conf should be approx. the same

● You can take shortcuts on slaves for perf.
● No binary logging
● Relaxed InnoDB durability
● read_only parameter to avoid most accidental writes

● If you promote a slave, don't forget to change 
its configuration!
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Schema

● For many: “normalization kills performance”
● Because it increases the number of joins
● And joins increase the number of random ops

● But
● Only true for specific hot spots in high load apps

● Other performance killer designs
● Having everything in a BLOB column
● Entity-Attribute-Value
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(De)Normalization

● Normalize and index correctly first
● Be sure to understand all the benefits of indexing: 

filtering, sorting, covering
● SSDs mitigates cost of random ops for normalized 

schemas

● Denormalize if some queries become slow
● Some combinations of filtering/sorting can't be 

solved with indexes
● Some queries will have to read lots of data

– Often the case with COUNT(*) or GROUP BY queries
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Other useful tips

● Don't be too generous when sizing
● The whole size is used for implicit temp tables
● Use tinyint instead of int if possible
● Use varchar(30) instead of varchar(255) if possible

● InnoDB tables and primary keys
● The PK holds the data (clustering index)
● It is implicitly included in all secondary keys
● So set a PK explicitly, as short as possible
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A common problem

● Let's design the user table of a social network
           CREATE TABLE user(
             user_id INT AUTO_INCREMENT,
             login VARCHAR(30),
             password VARCHAR(30),
             PRIMARY KEY(user_id)
           )ENGINE = InnoDB

● Over time, you will add contact information(phone, 
address, …), preferences, etc
– The table will quickly grow very big, queries will be slow
– Fragmentation and slow ALTER TABLEs will be the norm

● What can you do?
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A solution

● Let's create 2 new tables:
  CREATE TABLE user_info( CREATE TABLE user_has_info(
    user_info_id INT AUTO_INC.,   user_id INT,
    value VARCHAR(30),   user_info_id INT,
    PRIMARY KEY(user_info_id)   PRIMARY KEY(user_id,user_info_id)
  )ENGINE = InnoDB; )ENGINE = InnoDB;

● Now adding a property is easy and generic:
● Insert a line in user_info to register the property
● Insert a line in user_has_info for each user_id 

having the property
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Pros and cons

● Benefits
● No need to alter the user table anymore
● Development is easier

● Drawbacks
● The user_has_info table will not scale well

– Every user will have 10s of rows in the table
● Some queries are difficult to write efficiently

– List of the users not having property xxx
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Final thoughts

● In this particular situation:
● Some properties can go to the user table
● Some properties can go to the user_info table
● Some properties will need dedicated tables

● As your application grows, you will have to deal 
with this kind of problem
● Be creative!
● But try not to over-engineer
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Queries

● If my queries are slow, what can I do?
● “No pb, just upgrade your HW”

● Not always the solution
● Cost
● Physical limit of your HW
● Contentions in MySQL
● What if your queries are just waiting to sth external 

to the database?
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Improving queries

● Means improving response time
● Low and stable response time is your goal
● Stability is often overlooked

● How to make a query run quicker?
● Remove unnecessary work
● Run necessary work as efficiently as possible
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Remove unnecessary work

● Select only columns you really need
● Exception: SELECT * can be useful for caching 

purposes

● Select only rows you really need
● Use a LIMIT N clause if you want the top N results

● Use caching to offload the DB
● The fastest query is the query you don't run
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Optimize necessary work

● All access types are not equal
● type column in EXPLAIN output: index (index scan) 

and ALL (full scan) are the worst ones
● An index scan can be order of magnitudes slower 

than a full scan

● Rewriting queries
● Subqueries may perform very badly (much better in 

5.6 and in new versions of MariaDB)
● Use INNER JOIN instead of LEFT JOIN when 

possible
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Indexing

● Correct indexing is key to good performance
● Not as easy as it seems
● Too few idx kill perf, too many idx kill perf too...
● Tools can help you find improvements

– pt-duplicate-key-checker will find duplicate idx
– pt-query-digest and pt-index-usage will help you find slow 

queries
– user_statistics feature in MariaDB and Percona Server is 

useful to identify useless indexes
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Hardware

● In short
● Use commodity: it doesn't mean junk!
● 24 cores, 128GB RAM, 640 GB SSD is still 

commodity

● CPU
● No parallelization of query execution, so fast CPUs 

are needed for good response times
● MySQL scalability has greatly improved
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RAM

● Memory
● MySQL uses memory to cache index/data and for 

buffers
● If possible you want your working set to be cached 

in memory

● Your working set is the fraction of your data that 
is accessed frequently
● Not easy to assess it (1% to 100% of your data)
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Disks

● The world is moving to flash storage
● Much more IOPS and lower latency than HDDs
● Especially good at random IOPS
● SLC (performance) vs MLC (cost, capacity)

● You may need to update your my.cnf to take 
advantage of Flash
● Percona Server and MariaDB offer the most 

flexibility
● MySQL 5.6 is catching up
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Flash technologies

● SSD
● SATA interface: drop-in replacement for HDDs
● You need RAID like for HDDs

● PCIe devices
● Needs special drivers
● Better performance than SSD
● No need for RAID
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SSD/HDD usage patterns

● Mixing HDDs and Flash
● Flash for hot data / HDDs for archives
● Flash for data files / HDDs for InnoDB redo logs

● More RAM is often the best, but not if
● The amount of RAM is limited
● You have a high-throughput write workload
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HW for master and slaves

● Things to keep in mind
● Slaves must be able to keep up with the master's 

write load
● If you promote a slave, it should be as powerful as 

the master

● Common choices
● Same HW for master and slaves
● New HW for master, master's old HW for slave
● Flash for slaves, HDDs for master
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Backup/Recovery

● Typical mistake: focus on backup
● A backup you can't restore is useless
● So focus on restoring instead of backing up!

● Different needs
● For backups: low-impact required, quick if possible
● For restores: quick required, low-impact if possible



www.percona.com

Defining the right strategy

● First you should know your RPO and RTO
● RPO: Recovery Point Objective, ie how much data 

can you lose?
● RTO: Recovery Time Objective, ie how much 

downtime can you afford?

● Relaxed RPO and RTO means you will have 
more options to choose a tool
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Different kinds of backup

● Logical backups
● Text files, easily readable, editable (grep, sed, awk)
● Flexible – see list of options for mysqldump
● Restoring is VERY slow

● Raw backups
● Binary files
● Restoring the whole backup is fast
● Often not obvious to restore a single table/db
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mysqldump

● A must for small databases (max ~ 10GB)
● Very flexible
● Backups are fast
● Restores are not too slow

● But totally unusable for larger databases
● Restore time is a showstopper
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XtraBackup

● Online raw backups with low-impact
● Full / incremental backup
● Moving single tables from server to server
● Parallel backups
● Streaming backups
● In active development
● And more...
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Instrumentation/monitoring

● Monitoring/alerting will warn you when sth is 
wrong
● Nagios, Zabbix...
● Spend some time designing meaningful checks

● Graphing/trending
● Cacti, Munin...
● Will help you identify why things have broken
● Graph everything you can from CPU usage to size 

of the InnoDB buffer pool
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Instrumentation inside MySQL

● EXPLAIN
● SHOW PROFILE
● SHOW GLOBAL STATUS
● SHOW ENGINE INNODB STATUS
● SHOW MUTEX STATUS
● INFORMATION_SCHEMA
● PERFORMANCE_SCHEMA
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Instrumentation outside MySQL

● vmstat, iostat, mpstat...
● top, free...
● innotop
● Percona Toolkit
● Learn at least how to use some of the tools

● Sometimes you need realtime diagnostics
● Monitoring tools always have a lag
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● Thanks for attending!

● Q & A
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We're Hiring!  www.percona.com/about-us/careers/
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